
Biogem: an effective tool based approach for scaling up
open source software development in bioinformatics
Raoul J.P. Bonnal1∗, Jan Aerts2, George Githinji3, Naohisa Goto4,
Dan MacLean5, Chase A Miller6, Hiroyuki Mishima7, Massimiliano Pagani1,
Ricardo Ramirez-Gonzalez8, Geert Smant9, Francesco Strozzi10,
Rob Syme11, Rutger Vos12, Trevor J Wennblom13, Ben J Woodcroft14,
Toshiaki Katayama15, and Pjotr Prins9†
1Integrative Biology Program, Istituto Nazionale Genetica Molecolare, Milan, Italy; 2ESAT/SCD,
Faculty of Engineering and IBBT Future Health Department, University of Leuven, Belgium;
3KEMRI-Wellcome Trust Research Program, Kilifi, Kenya; 4Research Institute for Microbial
Diseases, Osaka University, Japan; 5The Sainsbury Laboratory, Norwich, UK; 6Biology
Department, Boston College, USA; 7Department of Human Genetics, Nagasaki University
Graduate School of Biomedical Sciences, Japan; 8The Genome Analysis Centre, Norwich, UK;
9Laboratory of Nematology, Wageningen University, the Netherlands; 10Parco Tecnologico Padano,
Lodi, Italy; 11Dept Environment & Agriculture, Curtin University, Australia; 12NCB Naturalis, Leiden,
the Netherlands; 13Silicon Life Sciences, Minneapolis, USA; 14Department of Biochemistry and
Molecular Biology, University of Melbourne, Australia; 15Laboratory of Genome Database, Human
Genome Center, Institute of Medical Science, University of Tokyo, Japan

ABSTRACT
Summary: Biogem provides a software development environment
for the Ruby programming language, which encourages community-
based software development for bioinformatics while lowering the
barrier to entry and encouraging best practices.

Biogem, with its targeted modular and decentralized approach,
software generator, tools, and tight web integration, is an improved
general model for scaling up collaborative open source software
development in bioinformatics.
Availability: Biogem and modules are free and open source
software. Biogem runs on all systems that support recent versions
of Ruby, including Linux, Mac OS X and Windows. Further
information at http://www.biogems.info. A tutorial is available at
http://www.biogems.info/howto.html
Contact: Raoul J.P. Bonnal (bonnal@ingm.org)

1 INTRODUCTION
In biomedical science, new technologies, data formats, and methods
emerge continuously. Scientists want to take advantage of these
developments as soon as possible, which requires bioinformatics
software to keep up with new requirements. We support the notion
of the Open Bioinformatics Foundation (OBF) that development
of collaborative open source software (OSS) is essential for
bioinformatics. The OBF represents a number of important projects,

∗to whom correspondence should be addressed
†R. Bonnal, T. Katayama and P. Prins contributed equally to this manuscript

such as BioPerl (Stajichet al., 2002), Biopython (Cocket al., 2009),
BioRuby (Gotoet al., 2010), and BioJava (Hollandet al., 2008).
These Bio-star (Bio*) projects effectively function as community
centres and share a centralised approach in software development
with large source code repositories. Bio* projects, generally, aim
for consolidated tools, a stable application programming interface
(API), and backwards compatibility.

Within the BioRuby project we experienced the drive for stability
easily overwhelmed and discouraged developers. Not only because
of the complexity of the existing code base, but also because coding
standards are enforced, and extensive tests and documentation are
required. Furthermore, newly contributed code may be subject
to community scrutiny, and in many cases further demands for
improving the code follow. The full process introduces a significant
delay between initial idea and final acceptance of the code in the
main project. Months, even years, may pass between stable releases
of main Bio* projects. It may take a long time before a new feature
is publicly released.

To scale up collaborative software development in BioRuby, we
recognised existing and new developers need to be encouraged
to contribute more code. To achieve this, we created Biogem a
Ruby application framework for rapid creation of decentralised,
internet published software modules written to lower the barrier
to entry. Biogem was initially inspired by the R/Bioconductor
packaging system (Gentlemanet al., 2004), which encourages
software developers to publish software modules independently
using simple rules; and Ruby on Rails (RoR) plugins (Thomaset al.,
2006), which provides a software generator and modular software
plugin system.

1

Associate Editor: Prof. Martin Bishop

© The Author(s) 2012. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/2.5/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

 Bioinformatics Advance Access published February 12, 2012
 at K

.U
.L

euven - U
niversity library on February 13, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

http://www.biogems.info
http://www.biogems.info/howto.html
http://creativecommons.org/licenses/
http://bioinformatics.oxfordjournals.org/

2 FEATURES
For Biogem we created specific tools to support the creation of
bioinformatics software functionalities and to support development
‘best practises’, i.e. infrastructure for software specification,
documentation and tests. We also provide tight web integration
based on public websites and services. These websites publish and
distribute software modules and give web based access to source
code, complete with revision history (see Fig.1). Biogem exposes
Ruby bioinformatics modules, and makes developer productivity
and module popularity visible.

The primary tool of the Biogem framework is a software
generator consisting of templates for bioinformatics scripts, source
code, software specification, documentation, and tests. With the
generator, required directories and files are automatically created
from templates for a new software module. Templates are included
for commonly encountered tasks, such as command line parameter
handling, error handling, make files etc.

Another Biogem tool publishes the versioned module with its
dependencies on the internet. The published module is immediately
available for download and installation to bioinformatics users in
the form of a Ruby gem (i.e. an archive of modular Ruby code
with all the supporting files and information needed for installation
by ‘package manager’ software). We refer to a Biogem module as
a ‘BioRuby plugin’ if the module extends the BioRuby project.
Published software modules are easily repackaged by software
distributions, e.g. Debian Bio Med (Mölleret al., 2010) and
BioLinux (Fieldet al., 2006).

The Biogem website (see availability) makes it easy to find and
install software modules. The website also allows people to track
releases, software dependencies, development activity, outstanding
issues, integration test results, documentation and popularity of
published modules. A map shows the location of Biogem developers
to help foster a sense of international community.

Biogem encourages software development best practices by
providing templates for documentation and multiple test driven
development strategies; such as unit tests, behaviour driven
development, and a natural language parser for software
specification (e.g. Chelimskyet al., 2010). A notable difference to
the traditional code contribution procedures of the Bio* projects is
that best practices are encouraged, rather than enforced.

Templates are also included for certain types of functionality, e.g.
to generate portable SQL database handlers, and to build a dynamic
web site. With Biogem it is possible to create a functional web
application, or service, in just a few steps. Generating the different
features is handled through work flows (see Figure 1).

We added tutorials for Biogem, which explain the software
generators, templates and software publishing. These tutorials are
part of the software distribution and available online.

We created ‘collections’ that bundle important modules together
as specific releases. For example, ‘bio-core’ contains stable
modules, and ‘bio-core-ext’ contains stable modules with bindings
to C libraries. Special purpose collections exist such as ‘bio-
biolinux’, which is distributed by the Cloud Biolinux project and
merged with the Galaxy CloudMan project (Afganet al., 2010).

In the first eight months of the Biogem functionality becoming
available, over twenty new modules have been published through
Biogem, showing a wide variety of subjects. These modules, for

example, target big data handling, next generation sequencing, and
parsing of bioinformatics data formats (Table 1).

CONCLUSION
Biogem provides an environment for rapid bioinformatics software
development with a low barrier to entry. Biogem frees potential
contributors from code maturity expectations that can be deterring,
and encourages Ruby developers to contribute experimental source
code early to the BioRuby community. Through Biogem software
is published in a modular way, and best practises are encouraged
through infrastructure for software specification and testing. All
this results in better utilisation of existing and new software
development manpower, thereby scaling up open source software
development in bioinformatics.

We suggest Biogem can serve as a generic model; not by
replacing existing Bio* projects, but by supplementing them with
a decentralised and evolutionary model for collaborative software
development.

Table 1. The introduction of Biogem has led to a broad range of new
BioRuby plugins. An up-to-date list can be found at http://biogems.info.

Name Description

bio assembly read and write assembly data
bio blastxmlparser fast, low memory, big data BLAST parser
bio bwa Burrows Wheeler aligner
bio cnls scraper nuclear localisation signal prediction
bio six frame sequence translation
bio genomic interval detect intervals
bio gff3 fast, low memory, big data GFF3 parser
bio isoelectric point calculate protein isoelectric point
bio kb illumina Illumina annotations
bio lazyblastxml another BLAST XML parser
bio logger sane error handling
bio nexml NeXML support, for phylogenetic data
bio ngs NGS workflows and display, incl. support

for bio bwa, Bowtie, TopHat, and Cufflinks
bio octopus transmembrane domain predictor interface
bio restriction enzyme DNA cutting operations with REBASE
bio samtools samtools API
bio signalp signal peptide prediction interface
bio sge split huge files for cluster computing
bio tm hmm transmembrane predictor interface
bio ucsc api UCSC Genome Database binding

ACKNOWLEDGEMENTS
We thank our four reviewers for constructive and detailed
comments; reviewers Brad Chapman and Hilmar Lapp identified
themselves. We also thank Steffen Möller for comments. This
work was supported by the Research Council KUL SymBioSys
and Flemish Government IBBT [PFV/10/016 to JA] ; the
Netherlands Organisation for Scientific Research/TTI Green
Genetics [1CC029RP to PP] ; the Japan Society for the Promotion of

2

 at K
.U

.L
euven - U

niversity library on February 13, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://biogems.info
http://bioinformatics.oxfordjournals.org/

Science, Grant-in-Aid for Young Scientists (B) [23791230 to HM] ;
and the EC FP7/2007-2013 Marie Curie Fellowship [237046 to RV]

REFERENCES
Afgan, E., Baker, D., Coraor, N., Chapman, B., Nekrutenko, A., and Taylor, J. (2010).

Galaxy CloudMan: delivering cloud compute clusters.BMC Bioinformatics, 11
Suppl 12, S4.

Chelimsky, D., Astels, D., Helmkamp, B., Dennis, Z., North, D., and Hellesoy, A.
(2010). The RSpec Book: Behaviour Driven Development with RSpec, Cucumber,
and Friends. Pragmatic Bookshelf Series. Pragmatic Programmers, LLC, The.

Cock, P. J., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A.,
Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B., and de Hoon, M. J. (2009).
Biopython: freely available python tools for computational molecular biology and
bioinformatics.Bioinformatics, 25(11), 1422–1423.

Field, D., Tiwari, B., Booth, T., Houten, S., Swan, D., Bertrand, N., and Thurston, M.
(2006). Open software for biologists: from famine to feast.Nat Biotechnol, 24(7),
801–803.

Gentleman, R. C., Carey, V. J., Bates, D. M., and others (2004). Bioconductor:
Open software development for computational biology and bioinformatics.Genome
Biology, 5, R80.

Goto, N., Prins, P., Nakao, M., Bonnal, R., Aerts, J., and Katayama, T.
(2010). BioRuby: bioinformatics software for the Ruby programming language.
Bioinformatics, 26(20), 2617–2619.

Holland, R. C., Down, T. A., Pocock, M., Prlic, A., Huen, D., James, K., Foisy, S.,
Drager, A., Yates, A., Heuer, M., and Schreiber, M. J. (2008). BioJava: an open-
source framework for bioinformatics.Bioinformatics, 24(18), 2096–2097.

Möller, S., Krabbenhöft, H., Tille, A., Paleino, D., Williams, A., Wolstencroft, K.,
Goble, G., Holland, R., Belhachemi, D., and Plessy, C. (2010). Community-driven
computational biology with Debian Linux.BMC Bioinformatics, 11 Suppl 12, S5.

Stajich, J. E., Block, D., Boulez, K., Brenner, S. E., Chervitz, S. A., Dagdigian,
C., Fuellen, G., Gilbert, J. G., Korf, I., Lapp, H., Lehvaslaiho, H., Matsalla, C.,
Mungall, C. J., Osborne, B. I., Pocock, M. R., Schattner, P., Senger, M., Stein,
L. D., Stupka, E., Wilkinson, M. D., and Birney, E. (2002). The Bioperl toolkit: Perl
modules for the life sciences.Genome Res, 12(10), 1611–1618.

Thomas, D., Hansson, D., Breedt, L., and (Firm), P. P. (2006).Agile web development
with rails. The facets of Ruby series. Pragmatic Bookshelf, second edition.

% biogem foo
create scaffold:
bioruby-foo
|-- Gemfile
|-- Gemfile.lock
|-- LICENSE.txt
|-- README.rdoc
|-- Rakefile
|-- VERSION
|-- bio-foo.gemspec
|-- lib
| `-- bio-foo.rb
|-- test
 |-- helper.rb
 `-- test_bio-foo.rb

% cd bioruby-foo

% edit lib/bio-foo.rb

% edit test/test_bio-foo.rb

% rake test

% git commit -c 'changes'

% rake release

Fig. 1. Biogem eases publication of new bioinformatics Ruby software modules on the Internet, in a few steps. (1) The software generator creates the directory
layout and files for a new software module named ’foo’. (2) The developer writes or modifies source code, and (3) quickly and easily publishes the source
code and module online, for others to read, install and use. Collaboration (4) is facilitated by publishing source code and changes to navigationable websites.
Then the workflow continues again at (2). The http://biogems.info website tracks published modules. Popularity of each published module is tracked, as well
as source code changes, updates, bugs, and issues. Unlike with the practise of publishing scientific papers, collaboration on software often comespost factum,
i.e. after original publishing of a software module. Therefore it pays to publish software modules early and often. This is reflected in the Biogem workflow.

3

 at K
.U

.L
euven - U

niversity library on February 13, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://biogems.info
http://bioinformatics.oxfordjournals.org/

